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Abstract--Density-wave oscillations in two-phase boiling flow systems have been studied numerically 
using a robust model based on two non-linear, functional, integro-differential equations. Results of several 
numerical simulations are used to gain insight into the physical mechanism behind density-wave 
oscillations. For a wide range of parameter values we find that: (1) traveling density-waves do not play 
an important role during the oscillations, and that oscillations may persist with very weak traveling density 
waves; (2) the oscillation period is between three and four times the channel transit time rather than twice 
as commonly reported; and (3) the variation in mixture velocity, in general, plays a more important role 
than the variation in mixture density in determining the channel pressure drop characteristics. A physical 
mechanism for these non-linear oscillations applicable to a large region of parameter space, as suggested 
by--and consistent with--the results of the numerical experiments, is proposed. 
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I N T R O D U C T I O N  

Density-wave oscillations in heated channels (Stenning & Veziro~lu 1965) have been studied 
extensively over the last three decades. These oscillations have been reviewed periodically (Bour6 
et al. 1973; Lahey & Moody 1977; Bour~ 1978; Bergles 1981; Kakaq & Liu 1991). A typical heated 
channel with single- and two-phase flow is shown schematically in figure 1. Flow is due to an 
externally imposed pressure drop, APex, and the fluid at the channel inlet is, in general, subcooled. 
Heat added along the channel length causes the flowing liquid to boil. Axial location at which 
boiling starts is denoted by 2, the boiling boundary. A mixture of liquid and vapor leaves the 
channel at the exit. System operating parameters are imposed pressure drop, inlet temperature and 
total heat supplied. Under certain conditions, steady-state solution of such two-phase boiling flow 
systems becomes unstable, resulting in oscillations with frequency in the order of 0.1-1 Hz. 
Oscillation amplitude usually saturates at an asymptotic value. Bifurcation analyses of these 
so-called density-wave oscillations show that, as one or more system parameters are varied across 
the stability boundary, supercritical Hopf bifurcation occurs (Hopf 1942; Hassard et al. 1981), 
resulting in stable limit cycle solutions to which the system evolves (Achard et al. 1985; 
Rizwan-uddin &Dorning 1986; Rizwan-uddin 1986). Comparison of the results of the bifurcation 
analysis has shown good agreement with experimental data (Rizwan-uddin & Dorning 1986). 

The physical mechanism of self-sustained density-wave oscillations in heated channels with 
two-phase boiling flow has been explained in various ways in the past (Stenning & Veziro~lu 1965; 
Bour6 et al. 1973; Lahey & Moody 1977; Bour~ 1978; Bergles 1981; Kakaq & Liu 1991). One 
approach, which relies on the simplified concentrated pressure drop model, is based on following 
the effect of an instantaneous, say positive, perturbation in inlet velocity (flow rate) that transforms 
into a wave of higher density in the two-phase region, and causes the exit pressure drop to increase 
at a later time when the higher density wave reaches the channel exit. Hence, in order to keep the 
total pressure drop at a constant value specified as the boundary condition, there results an 
instantaneous drop in the inlet velocity. The process is reversed as the density wave, resulting from 
the lower inlet velocity, travels to the channel exit: the pressure drop at the channel exit decreases 
as the wave of lower density reaches the top, resulting in an increase in the inlet flow rate, and 
starting the cycle over again. This approach describes the oscillations as the product of enthalpy 

721 



722  RIZWAN-UDDIN 

perturbations which travel with mixture flow velocity, and result in fluid waves of alternatively 
higher and lower density mixture traveling across the system (Kakaq & Liu 1991). According 
to this description, the traveling densiO' waves- -which affect the pressure drop in the channel in 
such a way that self-sustained oscillations result--appear to be an important characteristic of 
these oscillations. Moreover, based on these descriptions, the period of oscillation is generally 
reported to be about one to two times the transit time through the channel (Bour~ 1978). 
Though relevant for some cases, we find that in large regions of parameter space, the associated 
changes in mixture velociO', by affecting the pressure drop, play as important, and sometimes 
more important, a role during the oscillation, as variations in mixture density. Detailed 
analysis of the flow kinetics reported here, shows that for a wide range of  parameter values, 
traveling density waves are not fundamental to the oscillation mechanism. Based on the analytical 
and numerical results, it is further shown that for these regions in parameter space, the physical 
description of these oscillations suggests the period to be actually between three to four times 
the transit time through the channel. This is also strongly supported by data reported in 
literature. 

These non-linear oscillations also have been explained by assuming that inlet perturbations 
acquire a 180 ° out-of-phase pressure fluctuation at the exit, which is immediately transmitted 
to the inlet and results in self-sustained oscillations. Though applicable to oscillations 
of infinitesimal amplitude, as non-linear a phenomenon as self-sustained oscillations of finite 
amplitude in heated channels with two-phase flow does not always result in oscillations that are 
perfectly symmetric and hence, the explanation that inlet flow rate perturbation results in a 180' 
out-of-phase pressure fluctuation at the exit to cause self-sustained oscillations, must be modified 
and extended to explain finite amplitude oscillations. Moreover, it is not accurate to associate the 
pressure fluctuation at the exit during self-sustained oscillations, with a particular perturbation at 
the channel inlet at some earlier time (t - a ) .  The exit pressure is actually a function of the 
instantaneous distribution of the kinetic variables throughout the channel which are not only a 
function of  the perturbation at time (t - a) but also depend upon the inlet flow rate over the entire 
interval (t - a) to t. Any explanation of these non-linear oscillations must take into account the 
flow kinetics--variation of the mixture density and mixture velocity during oscillations, and 
continuous propagation of the inlet flow variation down stream through the single-phase and the 
two-phase regions. 

In view of  the inadequate description of the physical mechanism of the finite amplitude 
density-wave oscillations, there is a need to analyze these instabilities in more detail. Mathematical 
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Figure 1. Schematic diagram of a heated channel with single-phase (0 < z < 2 ) and two-phase (;. < -- < 1) 
regions. Externally imposed pressure drop is APc~ and heat flux is q " ,  
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models used to analyze these oscillations numerically should: (1) capture the underlying dynamics 
relatively accurately; (2) easily decouple various competing dynamical effects in the channel during 
the oscillations; and (3) be solvable numerically to simulate finite amplitude oscillations. In this 
paper, the physical mechanism behind density-wave oscillations is analyzed and explained using 
a continuous mathematical model. This model is particularly useful--as it allows reconstruction 
of the time-dependent and space-and-time-dependent variables in the channel during constant 
amplitude oscillations--in extracting the details in the variation of pressure drop components, and 
to study how individual components affect the flow rate and lead to constant amplitude oscillations. 
It has been used previously for the stability and bifurcation analysis of these non-linear oscillations 
(Achard et al. 1985; Rizwan-uddin & Dorning 1986). The set of equations in this model was 
linearized about a fixed point (equilibrium or steady-state) and solved for analytical stability studies 
of the system, and the stability boundary in parameter space was determined. Then the Hopf 
bifurcation that occurs as the parameters are moved across the stability boundary was studied using 
the Lindstedt-Poincar6 technique. It was thus determined that the Hopf bifurcation is supercritical 
for most cases of practical interest and that there are regions in three-dimensional operating 
parameter space beyond the stability boundary where stable oscillations exist, i.e. the stable fixed 
point bifurcates into an unstable fixed point and a stable limit cycle as the boundary is crossed 
(Achard et al. 1985; Rizwan-uddin &Dorning 1986). These analytical studies were carried out for 
the homogeneous equilibrium model (Achard et al. 1985) used here, and also for the more general 
drift flux model (Rizwan-uddin &Dorn ing  1986) for two-phase flow. Results for stability 
boundaries were compared with experimental data and it was found that though the drift flux 
model improved the agreement between analytical stability boundary and experimental data points, 
homogeneous equilibrium model also yielded very good agreement. Results of calculations based 
on both the homogeneous equilibrium model and drift flux model were in good agreement with 
the results obtained by using the two-fluids model as reported by Dykhuizen et al. (1986a). Having 
compared the results obtained using both the drift flux model and the homogeneous equilibrium 
model, it is clear that the added effort needed does not warrant the numerical analysis using the 
drift flux-based model. 

MODEL 

A two integro-differential equations model is used to study the dynamics of two-phase flow 
in a heated channel with spatially uniform heat flux. This model was developed--assuming 
incompressible single-phase flow, and using the homogeneous equilibrium model to represent 
the two-phase flow (Achard et al. 1985; Frutera 1986)--by first integrating the partial 
differential equations along the characteristics to find the kinetic variables as a function of inlet 
velocity, substituting the expressions for kinetic variables into the momentum equation and then 
integrating the momentum equation along the channel length to obtain the total pressure drop 
equation. The two independent variables in this model are the channel inlet velocity and "two-phase 
residence time", which is defined as the time spent in the two-phase region by the fluid at the 
channel exit at time t. This variable is introduced in the analysis while solving the two-phase region 
mixture density equation (or void propagation equation) using the method of characteristics 
(Achard et al. 1985; Rizwan-uddin &Dorning 1986; Rizwan-uddin 1986). All other dependent 
variables in the original set of partial differential equations, can be recovered (using exact 
expressions) once the time evolution of inlet velocity and two-phase residence time has been 
determined. The homogeneous equilibrium model has been used for three reasons: (1) frequency 
domain stability analyses show that this model is quite capable of predicting the onset of instability 
(Rizwan-uddin &Dorning 1986); (2) constitutive relationship for a time-dependent drift flux 
model-based analysis, and constitutive relationships for momentum and energy transfer between 
phases, between phases and channel wall, and the flow regime diagram, necessary for a 
time-dependent two-fluid model based analysis, are still not accurately known; and (3) numerical 
analysis of the two integro-differential equations-based model used here, is significantly 
more robust and efficient compared to analyses that use models based on partial differential 
equations. 
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The single-phase and two-phase flow equations are made dimensionless using the dimensionless 
variables and parameters given in the appendix (Achard et al. 1985; Rizwan-uddin &Dorn ing  
1986). The equation for the total pressure drop is 

AP~o ~ = AP~ + AP~ + AP2+ + APe = APex [1] 

where the subscripts tot, i, l~b, 24~, e and ex denote total, inlet, single-phase, two-phase, exit and 
external, respectively. Externally imposed pressure drop APe~, is specified as boundary condition, 
and AP~, AP e depend upon kinetic variables, and are given by 

,xP~(t ) = k,v ~(t ) [2] 

and 

APe( t  ) = kepm(Z = l , t  )j2(z = 1,t ) [3] 

where k~ and k e are inlet and exit restriction coefficient, v~ is the inlet velocity and pro(Z, t ) and j  (z, t ) 
are mixture density and volumetric flux (or mixture velocity), respectively. Single-phase and 
two-phase region pressure drops are obtained by first integrating along the characteristics for 
kinetic variables, and then after substituting the kinetic variables, integrating the single- and 
two-phase momentum equations along their respective single- and two-phase region lengths for 
pressure drop (Achard et al. 1985; Rizwan-uddin &Dorning  1986), 

= [ ] API~'(t) l_ dt + N n v ~ ( t ) + F r  ~ 2 ( t )  [4] 

inertia friction gravity 

dvi(t ) 
Ae2o( t  ) = J~ (t ) ~ + (inertia) 

Nmh [vi (t -- v)J,  ( t )  + Npc h J2 (t)] + (convection) 

N f 2 [ v ~ ( t ) J , ( t ) +  2NpchVi ( t ) J2 ( t )+  N2pchJ3(t)+ (friction) 

Fr-]JI (t)  (gravity) [5] 

where the boiling boundary, 2 (t )--defined as the axial location at which bulk fluid temperature 
reaches the saturation temperature (Achard et al. 1985)--is obtained by solving the single-phase 
energy equation, and is given by 

2 (t) = vi(o')da, [6] 
v 

r2~(t) is the two-phase residence time, given by 

I r2~ b It) 

1 -- 2 (t) = e'V~h~vi(t -- v -- o-)da, [7] 
do 

J~(t), J2(t), J3(t) and Ja(t) are given by 

f 
r2• (t) 

JI ( t )  =-- vi(t -- a -- v)da [8] 
.)o 

f~2~(') C ° 
J2(t) = vi(t -- o" - v)do" eNo~hnVi(t -- r/ -- v)dr/ [9] 

do do 

J3( t )  = vi(t - a - v)d~ eN~h~vi(t -- ~ -- v)d~ [lO] 
do 

I 
r24~ (t) 

J4(t ) =-- eU~h~Vi(t -- a -- v)da [1 1] 
d0 
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and single-phase residence time v is given by 

Ns.b 
V ~  

Nwh" 

The dimensionless parameters N~b, N~h, Nfl and Nf2 are proportional to inlet subcooling, total heat 
supplied, single-phase friction and two-phase friction, respectively. Substituting [2-5] in [1] yields 
the second integro-differential equation for the channel dynamics 

dvi(/) = 1 ~" _ k i r k ( t )  
dt (2 (t) + J. (t)) ( 

- kee - Npch~2* (')[vi ( /)  + NpchJa(t )]2 _ Nnv 2(t )2 (t) 

-- F r - '  (2 (t) + Ji (t)) - NpchVi(t -- v )J  1 (t ) -- N 2 h j 2 ( t  ) 

- Nf~[v ~(t)Ji (t) + 2N~hv~(t)J~(t) + N~hJ3(t)] + aeox(t)} [12] 

where z2c,(t) is given by [7]. 
Equations [7] and [12] can be solved using standard numerical techniques (Rizwan-uddin & 

Dorning 1990). The time- and space-and-time-dependent variables in the channel can be easily 
reconstructed once [7] and [12] have been solved for Vi(t ) and z2,(t  ). In the single-phase region, 
which extends up to 2 (t), the (dimensionless) density is one, and the flow velocity is equal to the 
channel inlet velocity (incompressible liquid). In the two-phase region, the mixture velocity or 
volumetric flux j (z, t ) is given by 

j ( z ,  t )  = vi(t) + Nwh(Z -- 2 ( t ) )  

and mixture density pro(Z, l ) is given by 

pro(Z, t )  = e -N.'h°(z) 

where a and z are related by 

z = 2 ( t ) +  eSo, h~vi(t --v -- r/)dr/ 

[13] 

[14] 

[15] 

Note, a is actually the time interval that the fluid particle at z (t)  (z/> 2 (t)) has spent in the 
two-phase region (Achard et al. 1985). An important variable in the analysis that follows is the 
total "channel residence time," which is the sum of the single-phase residence time v, and the 
two-phase residence time z2,. Single-phase residence time at steady-state and for the case of  uniform 
axial heat flux, even during transients, is constant and is given by Nsub/Nwh (Achard et al. 1985; 
Rizwan-uddin & Doming 1986). Two-phase residence time at steady-state ~2, is given by 
ln[1 + (Nwh/~ -- Nsub)]/N~h, and during the oscillations it is actually one of  the dependent variables 
calculated using [7] and [12]. 

The model described above ([7] and [12]) can easily be solved for different parameter values. The 
numerical scheme used to solve the non-linear integro-differential equations has been described 
earlier (Rizwan-uddin & Doming 1990). The derivative in [12] was approximated by fully implicit 
backward difference with second-order global error. However, the set of non-linear integro-differ- 
ential equations cannot be integrated directly due to the history integrals Ji(t ) (i = 1 . . . . .  4) that 
appear in them. The two-phase residence time z2 , ( t )  appears as the upper limits of these 
integrations backwards in time. Thus, although the integrals only have to be carried out over past 
times where the values of  vi (t) already have been calculated and the starting point of the integration 
interval is known, the end of this interval is not known a priori. Hence, the discretized forms of 
the equations, starting from predicted values for v~(ti) and z2,(tj) at each time step t~, were solved 
iteratively using a second-order Newton method. The iterations always converged rapidly even 
though the non-linear equations are transcendental in z2,(tj). The integrands of the integrals 2 (t) 
and Ji(t ) ( i  = 1 . . . . .  4) in the interiors of the time intervals Atj were approximated linearly in terms 
of  the values at the edges, and the integrals were then evaluated via a trapezoidal rule leading to 
second-order global error in Atj. Hence, the truncation error in the approximate evaluation of the 
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integrals was consistent with the backward differencing of the derivatives, and the numerical scheme 
used has second-order global error (Rizwan-uddin & Dorning 1990). 

Constant time steps At were generally used except at the end points of the history integrals being 
evaluated, which, due to the variable integration interval, sometimes required a time step < At (at 
the ends of the integration interval). The size of the dimensionless time step At was varied to ensure 
the results were converged as a function of At. The value used to obtain all the results reported 
here was At = 0.01, which is much smaller than all oscillation time scales studied. 

The model described above very conveniently yields various pressure drop components that 
constitute the total channel pressure drop. Limit cycle solutions for increasingly more detailed 
models are obtained, time- and space-and-time-dependent variables are reconstructed and plotted 
over one period of (stable) oscillation cycle for these cases. A detailed analysis of these plots reveals 
several interesting features of the mechanism behind the non-linear oscillations. 

ANALYSIS AND RESULTS 

Understanding the physical mechanism behind density-wave oscillations, requires understanding 
of the operating feedback mechanism and the heated channel kinetics. The feedback mechanism 
is discussed first. 

For constant channel inlet temperature, the feedback mechanism during the oscillation directly 
affects the inlet velocity (or inlet flow rate). The other dependent variables change as a result of 
their dependence upon the inlet velocity. Hence, during the oscillation, the inlet velocity 
immediately responds to changes in various pressure drop components, and then the variations in 
inlet velocity, as they are propagated through the single- and two-phase regions, affect the other 
dependent variables, such as the pressure drop components. The underlying mechanism for the 
change in inlet velocity, for the case of constant externally imposed pressure drop, is rather simple: 
inlet velocity evolves to keep the total internal pressure drop constant. For example, consider a 
heated channel with pressure drops concentrated at the inlet and exit, i.e. total pressure drop is 
the sum of concentrated pressure drops at the channel inlet and exit. Moreover, if the pressure drop 
at the exit at time t is only a weak function of inlet velocity (at time t ), then an increase in exit 
pressure drop, possibly due to a perturbation, would--to keep the total pressure drop constant--re- 
quire a decrease in inlet pressure drop via a decrease in inlet velocity. 

Channel internal pressure drop at any time t depends upon the instantaneous distribution of 
kinetic variables (boiling boundary, mixture velocity, mixture density), which in turn depend upon 
the inlet flow rate during a finite interval (t - a )  to t. Hence, to determine the delayed effect of 
inlet velocity variation on pressure drop characteristic, the evolution of kinetic variables as a 
function of inlet velocity variation must first be determined. For example, as stated before, 
distributed pressure drop in the two-phase region and concentrated pressure drop at the exit are 
not only a function of mixture density, but also depend upon volumetric flux (or mixture velocity). 
Hence, to determine the physical process behind the oscillations, knowledge of time variations of 
both of these space-dependent variables [pm(Z, t ) and j (z ,  t)] is necessary. Time variation of the 
individual pressure drop components such as single-phase region pressure drop, two-phase region 
pressure drop, inlet restriction pressure drop and exit restriction pressure drop, along with time 
variation of the inlet flow rate and boiling boundary at the periodically oscillating state, will 
significantly help in identifying the feedback process that results in constant amplitude oscillations. 

A simple heated channel with the pressure drop concentrated at the channel inlet and channel 
exit is analyzed first as case A. This model is used to identify characteristic trends during stable 
oscillations, and to develop the underlying mechanism behind these non-linear oscillations. The 
physical relationship between oscillation period and channel transit time is also explained, using 
this model. Differences between characteristics observed here and those reported earlier are pointed 
out. A more general model that includes distributed pressure drop in the single-phase and 
two-phase regions is studied next as case B. Based on the numerical results obtained for these two 
cases, the physical mechanism behind constant amplitude oscillations is explained. The effect on 
stability of higher fractional pressure drop near the exit is explicitly studied using a numerical 
example. 
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Table 1 

Parameters 

Dependent variables 

Nsub 10.00 
N~h 16.85 
APex 22.1244 
Fr i 0.0 
Nfl 0 .0  
N~2 0.0 
k i 6.00 
k e 2.05 

Inlet velocity 1.000 
Boiling boundary 0.5935 
AP i 6.00 
AP~ 16.1244 
API~ 0.0 
AP2,, 0.0 
APto t ( = APex ) 2 2 . 1 2 4 4  

Case A 

Although the more general problem, in which distributed pressure drop in the single-phase and 
two-phase regions is included, is investigated next, since the channel with pressure drop concen- 
trated at the channel inlet and exit has traditionally been used to explain these oscillations (Friedly 
& Krishnan 1972), analysis of a simplified heated channel with pressure drop concentrated at the 
channel inlet and at the channel exit is carried out first for comparison purposes. Equation [1] for 
this case reduces to 

APex = APi(t ) + AP~(t ) = constant [16] 

where AP~(t) and APe(t ) are given by [2] and [3]. The parameter values used, and selected 
dependent variables at the (unstable) steady-state for this problem (case A), are given in table I. 
As a perturbation is introduced in the inlet velocity at time t = 0, the inlet flow rate, and all other 
dependent variables, gradually evolve from the unstable steady-state solution (or unstable fixed 
point) to limit cycle oscillations. The evolution of the inlet velocity is shown in figure 2(a). Figure 
2(b) shows the trajectory in a projection of the phase space onto the two-dimensional vi-2 plane. 
To determine the oscillation mechanism at the constant amplitude oscillation, in figure 3, the 
variation of the dependent variables over one period of stable oscillation is plotted. In figure 
3(a)-(e) are shown the inlet and exit pressure drop, inlet velocity, boiling boundary, mixture density 
and mixture velocity at four points in the two-phase region (z = 0.75, 0.8, 0.9, 1.0), and channel 
residence time. Also shown in this figure are dashed vertical lines (A-H) to guide the eye. The inlet 
velocity is at the unstable steady-state value of 1.0 at times A and E. It is at its minimum and 
maximum at times C and G, respectively. Inlet velocity is half way between minimum and 1.0 at 
times B and D, and half way between maximum and 1.0 at times F and H. The following 
observations can be made: 

(1) The exit pressure drop oscillation and the oscillation in the mixture density at the exit are 
out of phase: though the exit mixture density is decreasing between times H-A-B-C, the 
exit pressure drop is increasing. This increase is due to the increase in exit volumetric flux. 
Clearly, since the pressure drop at the exit--which is a function of (proportional to) density 
and velocity at the exit--is varying in-phase with the velocity and out-of-phase with 
mixture density, the former must play a more dominant role than the latter. 

(2) The period of oscillation is 2.4, where as the channel transit time oscillates between 0.68 
and 0.74. (While the single-phase residence time is equal to v =- Nsub/Npc h = 0.59, two-phase 
residence time actually oscillates.) Note the oscillation period is significantly larger than 
twice (almost four times) the average transit time through the channel. 

(3) Mixture density at z = 0.7, 0.8, 0,9 and 1.0 reaches maxima at about the same time, 
indicating an almost simultaneous increase and decrease of mixture density in the entire 
two-phase region, with a rather weak traveling wave riding on top of the steady-state 
solution from the lower end of the two-phase region to the top. 

IJMF 20/4---D 
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It is clear that the observations stated above do not support the traditional explanations of the 
physical mechanism behind density-wave oscillations. Specifically, the pressure drop characteristics 
within the channel is influenced more strongly by the mixture velocity (volumetric flux) than by 
mixture density; the oscillation period is closer to four times the channel transit time, rather than 
twice; and the traveling density waves--that are, in classical explanations, an important character- 
istic of  such oscillations--appear to be very weak. It should also be noted that during stable 
oscillations, increase in inlet velocity oscillation amplitude occurs over 41% of the oscillation period 
and the amplitude decreases over the remaining 59% of the period. These oscillations are clearly 
not a result of perturbations acquiring a 180 ° out-of-phase pressure fluctuation at the exit. 

A detailed explanation of the numerical results presented in figures 2 and 3 is given below in 
two subsections, analyzing (1) the importance of mixture density versus mixture velocity and the 
role of density waves and (2) the relationship between the oscillation period and channel residence 
time. Note, all variables are dimensionless, the steady-state value of the inlet velocity is 1.0, and 
at the stable limit cycle the inlet velocity oscillates with an amplitude of approx. 0.24. 

Mixture density versus mixture velocity 

To establish the relative importance of  mixture density variation versus mixture velocity 
variation during the oscillations, changes in the two variables and their effects on total pressure 
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Figure 2. (a) Evolution of the inlet velocity as a function of time for case A. (b) Trajectory in a projection 
of the phase space onto the two-dimensional v~-2 plane. 
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Figure 3. (a-e)  Variat ion  o f  the dependent  variables  over  one  period o f  the stable osc i l lat ion for case A. 
Shown are, inlet and exit pressure drop, inlet velocity, boiling boundary, mixture density and mixture 
velocity at four points in the two-phase region (z = 0.75, 0.8, 0.9, 1.0), and channel residence time 

(v + ~2~). 

drop in the channel  are analyzed by fo l lowing their evolut ion,  assuming that the inlet velocity is 
specified, and the other dependent  variables actually fo l low from it. We  start at t ime C, where the 
inlet velocity is at its m i n i m u m  and starts to rise. First, note  that the boil ing boundary  responds 
to the increase in inlet velocity that starts at C with a certain delay and only  starts to m o v e  up 
after At ~_ 0.3 (dimensionless  time units). Since the channel  transit t ime is k n o w n ,  observe that as 
the fluid that was  at the inlet at time C reaches the channel  exit shortly after F, the mixture density 
(at the exit), as expected, starts to increase. (In fact, throughout  the cycle, variat ion in exit mixture 
density fo l lows  the variation in inlet velocity with an average delay close to the average channel  
transit time.) But the pressure drop at the exit is proport ional  to density a s  w e l l  a s  to the square 
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of the mixture velocity [3], and mixture velocity keeps decreasing even after the fluid that was at 
the channel inlet at time C reaches the channel exit. [This is because, although the mixture velocity 
in the two-phase region is proportional to the channel inlet velocity, it decreases as the boiling 
boundary moves up, see [13]. Actually, for large values of N~h, mixture velocity is largely 
determined by the boiling boundary variation and hence, even when the inlet velocity is increasing, 
the two-phase mixture velocity continues to decrease. The two-phase mixture velocity continues 
to decrease even after (almost up to time H) the inlet velocity has reached its peak at time G.] 
Comparing the variation in exit pressure drop with variations in exit mixture velocity and exit 
mixture density, makes it clear that since the exit pressure drop more closely follows the former, 
it is clearly being influenced more by the variation in the mixture velocity than by variation in 
mixture density. Moreover, due to the phase lag between the maximum in exit mixture density and 
the maximum in exit mixture velocity, the maximum in exit pressure drop occurs between the two 
maxima, closer to the mixture velocity maximum--indicating the relative importance of mixture 
velocity variation over mixture density variation in determining the channel pressure drop 
characteristics, and hence, in the feedback process, see [3]. 

To study the role of traveling density waves, we now analyze the space- and time-dependent 
variation of mixture velocity and mixture density. Mixture velocity changes by the same amount 
at every time step throughout the two-phase region. Mixture density in the entire two-phase region 
increases (or decreases) almost simultaneously, and hence, there is only a weak density wave that 
travels from the lower part of the channel to the top. During approximately half the oscillation 
cycle, the mixture density in the two-phase region increases. At the beginning of the cycle it 
increases mostly near the boiling boundary and the region closer to the exit is largely unaffected. 
As the cycle develops while continuing to increase near the lower portion Of the two-phase region, 
the mixture density also starts to increase at progressively higher elevation. The mixture density 
everywhere in the two-phase region reaches its maximum at almost the same time. 

This numerical example shows that strong traveling density waves are not essential for these 
non-linear oscillations and that these oscillations may persist--at least in some regions of the 
parameter space--even when traveling density waves are fairly weak. Even when strong traveling 
density waves do appear during oscillations while operating at other regions in parameter space 
(see case B), their effect on channel dynamics is considerably smaller than the effect of variation 
in volumetric flow rate that accompanies them. 

Oscillation period versus channel residence time 

The oscillation period for density-wave oscillations is traditionally reported (Stenning & 
Veziro~lu 1965; Bour6 1978; Kaka~ & Liu 1991) to be about twice the channel transit time. In this 
section, numerical results presented in figures 2 and 3 are used to develop a relationship between 
channel transit time and the oscillation period, and it is shown that the period of these oscillations 
is actually closer to four times the channel transit time. 

For the case of spatially uniform and time-independent heat flux, single-phase residence time v, 
even during the oscillation, is in general, constant, while the two-phase residence time oscillates 
(Achard et al. 1985; Rizwan-uddin &Dorning 1986). For case A, single-phase residence time v is 
equal to 0.59 and the two-phase residence time oscillates between 0.09 and 0.15. Hence, the total 
transit time during the oscillation oscillates between 0.68 and 0.74. The period of oscillation is about 
2.4. To identify the physical mechanism behind the relationship between the oscillation period and 
the channel transit time, we note that there is an unstable fixed point that corresponds to the inlet 
velocity of 1.0, and once again follow the fluid at the channel inlet at time C. After approximately 
one average channel transit time, this fluid reaches the channel exit near time E. But the information 
it carried with it to the channel exit--based on which the inlet velocity, through pressure feedback, 
is modified--is that although the inlet velocity is increasing, it is at its minimum, below the unstable 
steady-state value, i.e. the pressure drop at the exit near time E corresponds to the inlet velocity 
at C and hence, is lower than the pressure drop at the unstable fixed point. The result of the 
feedback is, hence, to continue increasing the inlet velocity. Since, by the time this information (inlet 
velocity at its minimum) reached the channel exit near time E, the inlet velocity was already close 
to its steady-state value, it keeps increasing beyond that value. When the fluid which is at the 
channel inlet at time E, after another channel average transit time, reaches the channel exit near 
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time G, with the information that the inlet velocity is near its steady-state value and still increasing, 
the pressure feedback process tries to stem the increase and, hence, the inlet velocity, after 
increasing for approximately two-average-channel-transit-times, starts to decrease at time G. 
Again, because of the delay, the exit learns at time A about the inlet velocity behavior at time G 
(inlet velocity above the unstable steady-state value) and, hence, forces the inlet velocity to decrease 
further, all the way up to time C. As is clear, this explanation actually implies the oscillation period 
to be close to four times the channel transit time, which is supported by the numerical results. 

Possible reasons for the differences between the conclusions drawn above and the mechanism 
of density-wave oscillations proposed by previous authors are discussed in the next section. Also 
reported in the next section is the experimental evidence (Saha et al. 1976) supporting the 
relationship between the oscillation period and channel residence time suggested above. 

Case B 

In order to analyze the oscillation mechanism in a more realistic channel with distributed 
pressure drop, and to compare it with the simpler channel case, the distributed pressure 
drops--frictional, gravitational and accelerational--are introduced in the model. The total channel 
pressure drop now is the sum of inlet pressure drop, single-phase region pressure drop, two-phase 
region pressure drop and exit pressure drop, see [1]. Parameter values and steady-state values of 
the dependent variables for this case (case B) are given in table 2. Evolution of the inlet velocity, 
after a small perturbation at the unstable steady-state, to stable limit cycle oscillation is shown in 
figure 4(a). In figure 4(b) is shown the phase space trajectory in the vi-,~ plane. In figure 5(a)-(e) 
are shown the inlet pressure drop, exit pressure drop, single-phase region pressure drop, two-phase 
region pressure drop, inlet velocity, boiling boundary, mixture density and mixture velocity at four 
points in the two-phase region (z = 0.7, 0.8, 0.9, 1.0), and channel residence time over one period 
of the stable limit cycle oscillation. The results of case B are similar to those of case A, and they 
further support the conclusions drawn from the simpler case in which the distributed pressure drop 
was ignored. 

There clearly is a traveling density wave in this numerical experiment, as can be seen in figure 
5(c). But pressure drop at axial locations where the crest of the wave passes through, actually--due 
to an even larger simultaneous drop in mixture velocity--decreases. This again is contrary to the 
traditional explanations of density-wave oscillations that require the pressure drop to increase as 
fluid waves of higher density pass through. Hence, it is clear that at least in some regions of 
parameter space, traveling density waves during these non-linear oscillations, are not strong enough 
to increase the local pressure drop as fluid waves of higher density pass through; the simultaneous 
variation (reduction) in mixture velocity is actually so strong that local pressure drop decreases. 
Dykhuizen et al. (1986b), who used a two-fluid model to simulate oscillations, also found that 
fractional changes in vapor fraction near the channel exit (at 4.25 m, where the channel is 5.25 m 
long) are significantly smaller than fractional changes in velocity. Though not explicitly stated, it 
is clear from the numerical results presented in the paper that their simulations also showed the 
local pressure drop to actually increase as the wave of lower vapor fraction passes through. 

Table 2 

Parameters 

Dependent variables 

Nsu b 4.50 
Np¢ h 8.90 
APex 45.60 
Fr -I 10.00 
Nft 2.80 
N~ 8.4 
k i 6.0 
k e 2.5 

Inlet velocity 1.00 
Boiling boundary 0.51 
AP i 6.00 
AP e 13.51 
API, 6.47 
AP2~, 10.62 
APto t ( = AP~) 45.60 
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Figure 4. (a) Evolution of the inlet velocity as a function of time for case B. (b) Trajectory in a projection 
of the phase space onto the two-dimensional t,.-), plane. 

The oscillation mechanism described earlier for case A is also relevant to this more general case. 
The effect on channel dynamics of  including the distributed pressure drop is that the feedback 
process becomes a little faster. This is because a change in inlet flow rate does not have to propagate 
all the way to the channel exit to affect the internal pressure drop, whereas, for the case of  no 
distributed pressure drop in the single- and two-phase regions, an inlet velocity variation had to 
travel all the way to the channel exit in approximately one channel transit time, to influence the 
pressure drop characteristics which in turn, through the feedback process, modulated the inlet 
velocity. Now, with distributed pressure drop included, a variation in inlet flow rate starts affecting 
the single-phase region pressure drop immediately and even the two-phase region pressure drop 
after a delay that is obviously shorter than the delay for the exit pressure drop. Hence, when 
distributed pressure drop is included, the total internal pressure drop responds to changes in the 
inlet flow rate on a time scale shorter than the channel transit time and therefore, the oscillation 
period is expected to be shorter than four-channel-transit-times. Note, the oscillation period in case 
B is still greater than three times the average channel transit time. 

The extent to which the oscillation period depends upon the channel transit time depends upon 
the steady-state pressure drop distribution along the channel length. I f  a large fraction of the total 
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pressure drop is concentrated near the channel exit, then the oscillation period--even in the 
presence of  distributed pressure drop--will be closer to four times the channel transit time. On the 
other hand, if a significant fraction of the internal pressure drop occurs closer to the channel inlet 
then, of course, the feedback process responds to variations in inlet velocity sooner than channel 
transit time and therefore, the oscillation period is expected to be less than four-channel-transit- 
times. 

The distribution of the fractional pressure drop along the channel length plays an important role 
in determining the stability of the system. Since variations in inlet velocity get amplified as they 
travel through the two-phase region, their (delayed) effect is strongest on pressure drop near the 
channel exit. To compensate for large changes in fractional pressure drop near the exit, the inlet 
velocity must change drastically leading to unstable system and/or large amplitude oscillations. 
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Hence, as has been observed in the past, a large concentration of pressure drop in the two-phase 
region near the channel exit leads to instability. By the same argument, a large concentrated 
pressure drop coefficient at the channel inlet enables the system to compensate for fractional 
pressure drop variation in the two-phase region by relatively small changes in inlet velocity, leading 
to a stable system. 

To study the effect on stability of pressure drop distribution in the channel, the heated channel 
system for parameter values used in case B, was further analyzed. Observe that after a perturbation 
at time t = 0, the system, shown in figure 3, asymptotically evolves from the unstable fixed point 
to stable limit cycle oscillations. To determine the effect of lower pressure drop near the exit, the 
pressure drop coefficient at the exit is decreased instantly from 2.5 to 2.45 at t = 80, after the system 
has evolved to stable oscillations. The resulting transient and the new asymptotic solution are 
shown in figure 6(a). A decrease in the exit pressure drop coefficient leads to a smaller pressure 
drop at the exit and hence, a drop in the fractional pressure drop near the exit. Thus, as 
perturbations are propagated to the channel exit, they are not amplified as much as they were before 
the change in coefficient, forcing a smaller variation in the inlet velocity and resulting in smaller 
amplitude oscillations. In figure 6(b) is shown the inlet velocity evolution from the stable periodic 
solution to the stable fixed point as a result of decreasing the exit pressure drop coefficient from 
2.50 to 2.40 at t = 80. Compared to the previous case, the fractional pressure drop near the exit 
in this case is decreased even further, resulting in a stable system. On the other hand, as the exit 
pressure drop coefficient is increased from 2.5 to 2.6 at t = 80, the fractional two-phase region 
pressure drop increases, requiring larger variation in the inlet velocity to compensate tbr the 
variation in the two-phase region pressure drop, and this results in larger amplitude oscillations. 
Evolution of the inlet velocity for this case is shown in figure 6(c). Clearly, in the case of the larger 
two-phase region pressure drop, the variation in the two-phase region pressure drop is also larger, 
as the inlet velocity variations are propagated downstream, requiring larger amplitude oscillations. 

DISCUSSION 

Cases A and B, discussed in the previous section, quite clearly demonstrate the physical 
mechanism behind the so-called density-wave oscillations. Two processes are fundamental to these 
non-linear oscillations: (1) delayed effects of inlet velocity variation on channel pressure drop 
characteristics; and (2) the feedback process by which the system compensates, by varying the inlet 
velocity at time t, for any pressure drop variation that results due to changes in inlet velocity at 
earlier times. A combination of these two processes leads to stable periodic oscillations of finite 
amplitude. The detailed process has been explained in the previous section. 

The fact that the details of  the physical mechanism behind the density-wave oscillations proposed 
here are different--sometimes even contradictory--from those proposed earlier, requires some 
explanation for the differences. Specifically, there are two issues: relative importance of mixture 
velocity versus mixture density and the role of  traveling density waves; and the relationship between 
channel transit time and oscillation period. The issue of the relative importance of mixture density 
variation versus mixture velocity variation during stable oscillations is addressed first. 

Some of the initial two-phase boiling flow experiments were carried out at extremely low 
Reynolds numbers (Stenning & Veziro~lu 1965). In such cases, the effects on local pressure drop 
of the mixture density variation can be more dominating or at least comparable to the effects of 
mixture velocity variation, and hence, an increase in mixture density, associated with the crest of 
a traveling density wave, would lead to an increase in local pressure drop. Since the study of 
Stenning & Veziro~lu (1965), even when analyzing systems with relatively large Reynolds numbers, 
the same mechanism has been assumed to be valid, which as clearly shown, is not the case. 

The second issue is that of the relationship between oscillation period and channel transit time. 
The experimental set up of one of the first analyses (Stenning & Veziro/glu 1965) that reported the 
oscillation period to be close to the channel transit time, included a supply tank, a surge tank and 
a heated channel. The pressure drop was kept constant between the supply tank and the channel 
exit, which makes the actual system significantly larger than the heated channel alone. The actual 
system transit time (from the supply tank to the channel exit), which was not reported, must be 
larger than the heated channel transit time that was reported, and found to be close to the 
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Figure 6. Effect of change in fractional pressure drop near the channel exit. (a) Decrease k~ from 2.5 to 
2.45 at t = 80; (b) decrease k e from 2.5 to 2.40 at t = 80; (c) increase k~ from 2.5 to 2.60 at t = 80. 

oscillation period. In many experimental analyses since then, a constant pressure drop boundary 
condition is imposed across the heated channel by using a large parallel by-pass. In such systems, 
the transit time between two constant pressure points is actually just the channel transit time. 
Following Stenning & Veziro~lu (1965)--who correctly identified the oscillation period in their 
experiment to be close to the system transit time--several authors have erroneously assumed the 
oscillation period, even in parallel channel flow, to be close to the channel transit time. We have 
calculated the channel transit time from the experimental data reported by Saha et al. (1976)--who, 
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Table 3. Ratio of oscillation period and channel residence time in experimental data (Saha 
et al. 1976, Set II) 

Single-phase Two-phase  Channel 
residence residence residence 

time time time 
f T = l/f v = Nsub/N~h z2~ (v + z2¢ ) T/I(v + z2,)] 

0.33 3,07 0.565 0.145 0.710 4.32 
0.33 3.03 0.550 0.156 0.706 4.28 
0.35 2.86 0.540 0.161 0.701 4,04 
0.36 2.78 0.530 0.171 0.700 3.96 
0.33 3.03 0.540 0.179 0.719 4.20 
0.37 2.70 0.500 0.215 0.715 3.76 
0.39 2.56 0.495 0.223 0.718 3.56 
0.44 2.27 0.430 0.242 0.670 3.40 
0.42 2.38 0.393 0.268 0.662 3.60 
0.45 2.22 0.365 0.273 0.638 3.48 

using a large by-pass, imposed a constant pressure dro p boundary condition across the heated 
channel. In table 3 are shown the frequency and period of  oscillation for the experimental data, 
Set II, as reported by Saha et al. (1976), and the average channel transit time calculated from the 
values of  Nsub, Np~h and ~. The ratio of  oscillation period to average channel transit time is also 
shown. It is clear that the oscillation period reported is significantly larger than one-to-two-times 
the channel transit time. 

C O N C L U S I O N S  

The analysis presented in this paper clearly shows that past description of the physical 
mechanism behind the so-called density-wave oscillations needs to be supplemented. Through the 
analysis of  the simplified problem with pressure drop concentrated at the channel inlet and channel 
exit, and the more realistic problem that includes distributed pressure drop along the length of the 
channel, it is clearly established that in certain regions of  parameter  space, variation in mixture 
velocity affects the pressure drop characteristics of  the channel during the oscillation more than 
the variation in mixture density, and that traveling density waves do not appear to play an 
important role in such oscillations. Moreover, local pressure drop, due to the simultaneous increase 
in mixture velocity, actually increases as a "wave" of lower density passes. 

It has also been found that the oscillation period, for a wide range of parameter  values, is between 
three and four times the average channel transit time. Based on the numerical results obtained, and 
based on the analysis of  competing dynamical effects during the oscillations, a consistent physical 
model for these non-linear oscillations is proposed. 
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A P P E N D I X  

The Dimensionless Variables and Parameters 
The single- and two-phase region equations are made dimensionless using the dimensional channel length L*, liquid 

density p f, latent heat Ah rg and an arbitrary characteristic velocity v *. The dimensionless variables and parameters that 
appear in these equations are defined as follows: 

j* v,* Z* 
j = - - ,  v~=--,  = = Z ; '  

v* v~' 

2* t* P*m 

h* P* v .2 
hm---~, P=p~v.  2, Fr=g,L ~ ,  

N,,=O~ Nr= p~ 1 p~" Ap*' Np=l N~' 

N _ f 'L*  N _ f 'L*  N~ub Ah*Ap* 
" -Z -D* '  ~ - 2 ~ r '  • , '  Ah ~PG 

q"*~*LAp * 
Nmh A*Ah* * *v* ~PGPf o 


